

Recognition and Management of Respiratory Distress in Pediatrics

Charlotte Stuhr RN, BSN, CCRN Mary Gapp RN, BSN, CPN

1

Adults vs.

Pediatrics

History

• Developmental History, Social History, Immunization History

Parents

- Trust parent as the historian
- Observe parent/child interactions
- Parents are the "2nd patient"

Vital Signs

- Infants
 - Higher normal HR
 - Faster RR
 - Lower BP
- Temperature axillary, tympanic, temporal, rectal

Weight

• Everything is weight based

Adults vs Pediatrics

Physical Exam Differences – pediatrics are not "just little adults"

HEENT → Fontanelle, Ear canal

Respiratory → Abdominal breathing, "noisy" breathers, faster RR

Cardiovascular/Circulatory

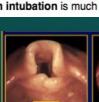
→ location of pulses,
assess for murmur

GI/GU → rounded belly, umbilical hernias

Skin → Observe any scars/injuries for suspicious patterns

Primary cause of decompensation/cardiac arrest

Pediatrics: Respiratory


Adults: Cardiac

3

Anatomical Differences Between Pediatric and Adult Airways

Pediatric airway

- Proportionally smaller larynx
- Narrowest portion is the cricoid cartilage (below vocal cords)
- · Epiglottis is longer and narrower
- · Head and occiput are proportionally larger
- · Tongue is proportionally larger
- · Neck is much shorter
- · Larynx is more anterior and cephalad
- Azanoids are are larger
- Risk of mainstem intubation is much higher in pediatrics due to short trachea and bronchus

What puts a child at risk?

Increased metabolic demand

Increased oxygen consumption

Increased minute ventilation

Small lung volumes

5

Pediatric Assessment in Respiratory Distress

- How to assess your patient status in 10 seconds?
 - · Level of Consciousness
 - · Work of Breathing
 - Color

Signs/Symptoms of Respiratory Distress

Tachypnea

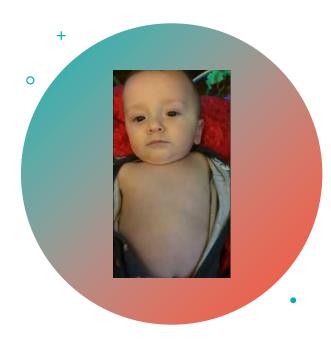
Nasal Flaring

Retractions

Grunting

See-Saw Breathing

Head Bobbing

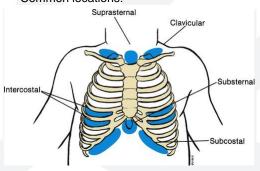

Skin Vitals: pale, mottled

7

Tachypnea

- Why do we become tachypneic?
 - Increase RR to compensate for impaired gas exchange or need to excrete more Co2
- Why is this different in children?
 - Already have higher respiratory rate than adults
 - Smaller chest cavity and lung capacity
 - · Weaker intercostal muscles

Age	Heart Rate (beats/min)	Blood Pressure (mmHg)	Respiratory Rate (breaths/min)
Premature	110-170	SBP 55-75 DBP 35-45	40-70
0-3 months	110-160	SBP 65-85 DBP 45-55	35-55
3-6 months	110-160	SBP 70-90 DBP 50-65	30-45
6-12 months	90-160	SBP 80-100 DBP 55-65	22-38
1-3 years	80-150	SBP 90-105 DBP 55-70	22-30
3-6 years	70-120	SBP 95-110 DBP 60-75	20-24
6-12 years	60-110	SBP 100-120 DBP 60-75	16-22
> 12 years	60-100	SBP 110-135 DBP 65-85	12-20


Nasal Flaring

 Children do this unintentionally to increase size of upper airway

9

Retractions

- · What are they?
 - Collapse of the soft tissue due to muscular effort and increased intrathoracic pressure
- · Why do they happen?
 - Muscle activity is increasing in an effort to increase the tidal volume of the lungs
- · Common locations:

Grunting

- · What is it?
 - Sound made with closure of the glottis and attempt to breathe against own glottis to provide "self-peep"
 - Goal: maintain lung volume

11

See-Saw Breathing

- · What is it?
 - Rocking motion of the chest wall and abdomen due to forced exhalation
- Associated with bronchospasm

Head Bobbing

What is it?

 Head bobs with taking a breath in effort to expand chest cavity

When does this happen?

- With increasing lethargy, but still has significant WOB
- Late sign- impending respiratory failure

13

Progression to Respiratory Failure

- Infant/Child can no longer maintain effective gas exchange with compensatory mechanisms
- Signs of inadequate oxygenation (hypoxia):
 - Desaturation
 - · Cyanosis, mottling
- Signs of inadequate ventilation (hypercarbia):
 - Progressive tachycardia
 - Significant agitation progressing to lethargy and somnolence
 - Older Child: report they can't breathe, begin to be uncooperative
- Somnolence is a significant sign of impending failure

Signs/Symptoms of Respiratory Failure

Breathing

- Tachypnea (early)
- Bradypnea/Apnea (late)
- Retractions
- · Accessory muscle use
- Decreased effort
- Decreased chest expansion

Systemic

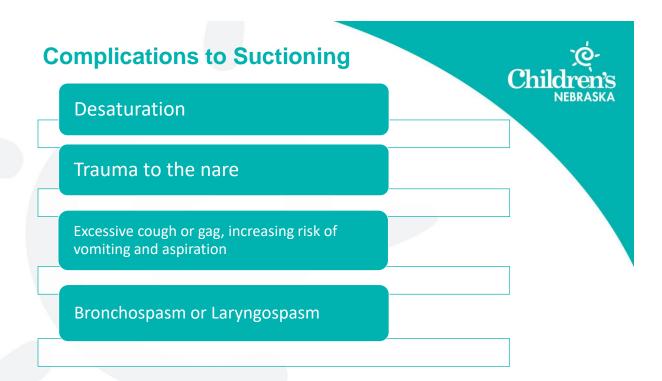
- Altered mental status
- Weak/Absent cry
- Tachycardia (early)
- Bradycardia (late)
- Central cyanosis
- Mottling
- Hypoxemia (despite O2 administration)
- Hypotonia

15

Management of Respiratory Emergencies

Airway Positioning

Suctioning

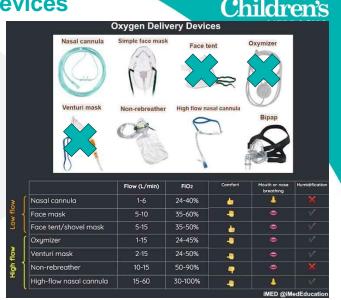

Utilize airway adjuncts

Supplemental Oxygen

ECG monitor (as needed)

Inhaled medications

Invasive Airways



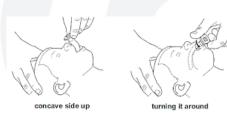
17

Non-Invasive Airway Devices

'ල්-Children's

- Non-Invasive:
 - Nasal Cannula
 - Oxymask
 - Non-Rebreather

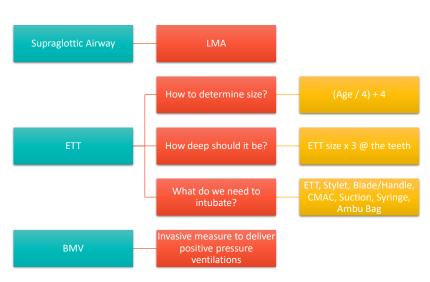
Non-Invasive Devices Oxygen Therapy Care Pathway Oxy₂MaskTM vs Traditional Devices Oxy₂Mask™ 24% 90% 1 - >15lpm min. 10lpm | 5 - 10lpm up to 5lpm 21% 30% 40% 50% 60% 70% 80% 90% No changes or adjustments Property of Southmedic NOTE: Oxy₂Mask[™] Tyke flow range 0.25 lpm - ≥ 5 lpm and FiO2 range = 22-65%


19

Airway Adjuncts

- Used for unconscious patients at risk for developing airway obstruction
 - · How to measure?
 - · How to insert?

Oropharyngeal Airway (OPA)



Inserting an oropharyngeal airway in an older child

Nasopharyngeal Airway (NPA)

Invasive Airway Devices

21

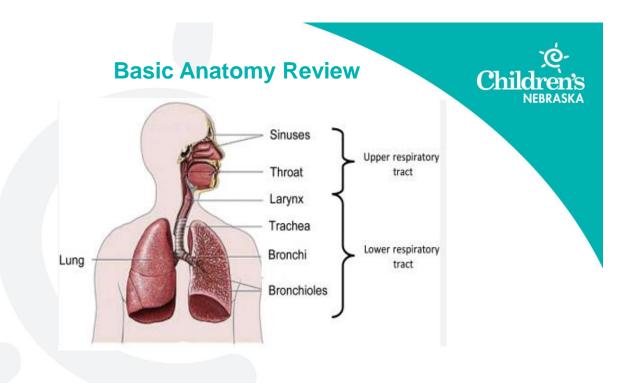
Bag Valve Mask

- Easy to learn, successfully used by range of skill levels, some practice needed
- Best performed as a two person technique (holder and bagger)
- Minimal prep needed, take equipment out of bag and attach to O2
- Doesn't interfere with cardiac massage initially but requires 30:2/15:2 ratio
- Causes significant gastric distension and regurgitation risk due to lack of funneling towards the trachea
- High rates of management difficulty or failure requiring switching to a different strategy
- Can be used on minimally conscious patient with intact gag reflex
- Does not allow for much positive pressure ventilation

<u>Supraglottic Device</u>

- Easy to learn, successfully used by a range of skill levels, some practice needed
- Performed as a one person technique successfully
- Minimal prep needed, take out of packaging, lubricate and attach O2
- Can be used either 30:2/15:2 ratio or continuous (but risk of leak)
- Can cause gastric distention and regurgitation but some models now have gastric port for decompression
- Moderate rates of management difficulty/failure due to positioning, leaks and failure to secure/monitor
- Requires unconscious patient with loss of gag reflex
- Allows for some positive pressure ventilation up to 25cmH2O then develops leaks
- Sits perilaryngeal and above epiglottis so not useful in upper airways obstruction

Endotrachial Intubation


- Requires training to a high level by dedicated practitioners with frequent practice needed
- Requires a two person technique (an intubator and a kit handler)
- Intensive prep needed to lay out equipment, check cuff, multiple stages
- Initially interferes with cardiac massage to insert, then can be used continuously
- Does not affect gastric distention/ regurgitation and allows for gastric tube to be easily passed
- Once correctly placed/secured, less airway management difficulties or unexpected loss of airway
- Requires unconscious patient and initial plus ongoing paralysis/sedation
- Allows high positive pressure ventilation (asthma, drowning, tension pneumothorax)
- Sits below epiglottis with cuff so can be used in almost all airway issues
- Higher risk of hyperventilation leading to respiratory alkalosis, reduced cerebral perfusion and barotrauma

Common Pediatric Breathing Complications

Upper Airway Obstruction Lower Airway Obstruction Disordered Control of Breathing Laryngospasm & Bronchospasm

23

- Causes: Croup, Anaphylaxis, Foreign Body, Post-Intubation Swelling
- Signs/Symptoms : Nasal Flaring, Stridor, Tracheal Tugging
- Treatment: Nebulized Racemic Epi, Corticosteroids

- •Signs/Symptoms: Wheezing, Grunting, Subcostal & Intercostal Retractions
- •Treatment: Suctioning, Bronchodilators, Corticosteroid
- Causes: Bronchiolitis, Asthma, Pneumonia

Lung Tissue Disease

Pneumonia

Treatment: O2, CXR, antibiotics, PPV

Pulmonary Edema (cardiogenic)

> Treatment: PEEP, diuretics, inotropic support

ARDS

Treatment:PPV, PEEP, low TV

27

Disordered Control of Breathing

Increased ICP

Treatment: avoid hypoxemia, hypercarbia, hyperthermia

Overdose

Treatment: Antidote (if available), Respiratory support

Neuromuscular Disease

Treatment: noninvasive or invasive ventilatory support

Laryngospasm

Fig. 6. Laryux before and during a laryngospusm, White, movement of the vocal conds; yellow, movement of fulse conds; blue, movement of arytenoids.

What is it?

- Partial or complete airway obstruction associated with increasing abdominal and chest wall efforts to breathe against a closed glottis
- Commonly occurs during induction and emergence of anesthesia

- Oral or gastric secretions
- Blood
- Suctioning through oral airway
- Laryngoscope
- "light" anesthesia

Risk Factors:

- ENT Cases
- Upper respiratory infection within 2 weeks
- History of wheezing or eczema
- Family history of asthma, rhinitis, eczema, or smoking

29

Laryngospasm

How does it manifest?

Suprasternal and supraclavicular retractions

Tracheal tugging

Paradoxical chest

Abdominal movements

Inspiratory stridor (in partial spasm only)

No breath sounds (in complete spasm)

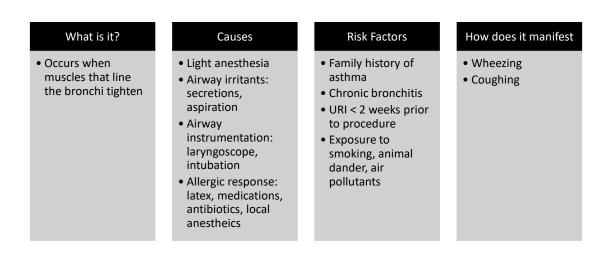
Early Recognition

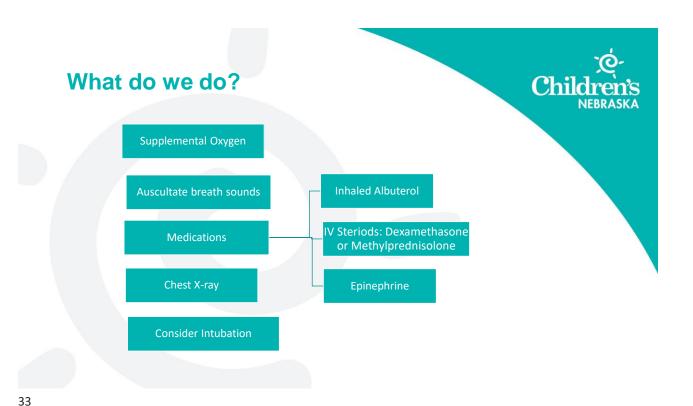
No air movement/breath sounds

Absence of movement of reservoir bag


Flat capnography

Late signs:


- Desaturation
- Cyanosis
- bradycardia



Bronchospasm

Patient Desaturating... What do you do?

Position the airway / establish what should be a maskable airway

Look at how the patient is

- Oral airway for deeply sedated patients
- Nasal trumpet for more awake patients (this can also stimulate the patient to wake up ⁽³⁾)

Look at how the patient is breathing while positioning airway:

- Rocker breathing suggests laryngospasm/obstruction
- Tugging suggests bronchospasm
- Small breaths suggest shallow breathing (patient needs supplemental O2 until more awake)

Apply CPAP (get the bag tight) and see if you can bag with the patient

- May not hear anything with laryngospasm
- Will likely here wheezing with bronchospasm as complete bronchospasm is rare

Have someone listen to breath sounds

Key Takeaways

- Severe decompensation and cardiopulmonary arrest in pediatrics is typically respiratory in origin
- Decreased level of consciousness is a sign of impending respiratory failure
- Laryngospasm and Bronchospasm are common complications in pediatrics post-op

35

That's all, you can take a deep breath \odot

References

- Children's
- Care of the Acutley III Pediatric Pt: Respiratory Bundle. American Academy of Critical Care Nurses. https://www.AACN.org
- Kacmarek, R. (2020). Egan's fundamentals of respiratory care (12th ed). St. Louis, MO: Mosby.
- Walsh, B.K. (2019). Neonatal and pediatric respiratory care (5th ed.). St. Louis, MO: Saunders/Elsevier.
- Samson, R. et al (2020). Pediatric Advanced Life Support. American Heart Association.